Dopamine D1 receptor activation rescues extinction impairments in low-estrogen female rats and induces cortical layer-specific activation changes in prefrontal-amygdala circuits

多巴胺 D1 受体激活可挽救低雌激素雌性大鼠的消退障碍,并诱导前额叶杏仁核回路中皮质层特异性激活变化

阅读:7
作者:Colin D Rey, Jennifer Lipps, Rebecca M Shansky

Abstract

Post-traumatic stress disorder (PTSD) is twice as common in women as in men; it is a major public health problem whose neurobiological basis is unknown. In preclinical studies using fear conditioning and extinction paradigms, women and female animals with low estrogen levels exhibit impaired extinction retrieval, but the mechanisms that underlie these hormone-based discrepancies have not been identified. There is much evidence that estrogen can modulate dopaminergic transmission, and here we tested the hypothesis that dopamine-estrogen interactions drive extinction processes in females. Intact male and female rats were trained on cued fear conditioning, and received an intraperitoneal injection of a D1 agonist or vehicle before extinction learning. As reported previously, females that underwent extinction during low estrogen estrous phases (estrus/metaestrus/diestrus (EMD)) froze more during extinction retrieval than those that had been in the high-estrogen phase (proestrus; PRO). However, D1 stimulation reversed this relationship, impairing extinction retrieval in PRO and enhancing it in EMD. We also combined retrograde tracing and fluorescent immunohistochemistry to measure c-fos expression in infralimbic (IL) projections to the basolateral area of the amygdala (BLA), a neural pathway known to be critical to extinction retrieval. Again we observed diverging, estrous-dependent effects; SKF treatment induced a positive correlation between freezing and IL-BLA circuit activation in EMD animals, and a negative correlation in PRO animals. These results show for the first time that hormone-dependent extinction deficits can be overcome with non-hormone-based interventions, and suggest a circuit-specific mechanism by which these behavioral effects occur.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。