Early Visual Motion Experience Improves Retinal Encoding of Motion Directions

早期视觉运动体验可改善运动方向的视网膜编码

阅读:5
作者:Li Zhang, Qiwen Wu, Yifeng Zhang

Abstract

Altered sensory experience in early life often leads to altered response properties of the sensory neurons. This process is mostly thought to happen in the brain, not in the sensory organs. We show that in the mouse retina of both sexes, exposed to a motion-dominated visual environment from eye-opening, the ON-OFF direction selective ganglion cells (ooDSGCs) develop significantly stronger direction encoding ability for motion in all directions. This improvement occurs independent of the motion direction used for training. We demonstrated that this enhanced ability to encode motion direction is mainly attributed to increased response reliability of ooDSGCs. Closer examination revealed that the excitatory inputs from the ON bipolar pathway showed enhanced response reliability after the motion experience training, while other synaptic inputs remain relatively unchanged. Our results demonstrate that retina adapts to the visual environment during neonatal development.SIGNIFICANCE STATEMENT We found that retina, as the first stage of visual sensation, can also be affected by experience dependent plasticity during development. Exposure to a motion enriched visual environment immediately after eye-opening greatly improves motion direction encoding by direction selective retinal ganglion cells (RGCs). These results motivate future studies aimed at understanding how visual experience shapes the retinal circuits and the response properties of retinal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。