Peripheral FGFR1 Regulates Myofascial Pain in Rats via the PI3K/AKT Pathway

外周 FGFR1 通过 PI3K/AKT 通路调节大鼠肌筋膜疼痛

阅读:5
作者:Mingyang Zhang, Feihong Jin, Yuchang Zhu, Feng Qi

Abstract

Myofascial pain syndrome (MPS) is a type of skeletal pain identified by myofascial trigger points (MTrPs). The formation of MTrPs is linked to muscle damage. The fibroblast growth factor receptor (FGFR1) has been found to cause pain sensitivity while repairing tissue damage. The aim of the current study was to explore the mechanism of FGFR1 in MTrPs. We used a RayBio human phosphorylation array kit to measure p-FGFR1 levels in human control subjects and patients with MTrPs. P-FGFR1 was upregulated in the patients with MTrPs. Then a rat model of MPS was established by a blunt strike on the left gastrocnemius muscles (GM) and eccentric-exercise for 8 weeks with 4 weeks of recovery. After establishing the MPS model, the morphology of the GM changed, and the differently augmented sizes of round fibers (contracture knots) in the transverse section and fusiform shapes in the longitudinal section were clearly seen in the rats with myofascial pain. The expression of p-FGFR1 was upregulated on the peripheral nerves and dorsal root ganglion neurons in the MTrPs group. The spinal Fos protein expression was increased in the MTrPs group. Additionally, the mechanical pain threshold was reduced, and the expression of FGF2, p-FGFR1, PI3K-p110γ, and p-AKT increased in the MTrPs group. PD173074 increased the mechanical pain threshold of the MTrPs group, and inhibited the expression of p-FGFR1, PI3K-p110γ, and p-AKT. Moreover, LY294002 increased the mechanical pain threshold of the MTrPs group. These findings suggest that FGFR1 may regulate myofascial pain in rats through the PI3K/AKT pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。