A Role for VCP/p97 in the Processing of Drug-Stabilized TOP2-DNA Covalent Complexes

VCP/p97 在药物稳定的 TOP2-DNA 共价复合物加工中的作用

阅读:6
作者:Rebecca L Swan, Ian G Cowell, Caroline A Austin

Abstract

DNA topoisomerase II (TOP2) poisons induce protein-DNA crosslinks termed TOP2-DNA covalent complexes, in which TOP2 remains covalently bound to each end of an enzyme-induced double-strand DNA break (DSB) via a 5'-phosphotyrosyl bond. Repair of the enzyme-induced DSB first requires the removal of the TOP2 protein adduct, which, among other mechanisms, can be accomplished through the proteasomal degradation of TOP2. VCP/p97 is a AAA ATPase that utilizes energy from ATP hydrolysis to unfold protein substrates, which can facilitate proteasomal degradation by extracting target proteins from certain cellular structures (such as chromatin) and/or by aiding their translocation into the proteolytic core of the proteasome. In this study, we show that inhibition of VCP/p97 leads to the prolonged accumulation of etoposide-induced TOP2A and TOP2B complexes in a manner that is epistatic with the proteasomal pathway. VCP/p97 inhibition also reduces the etoposide-induced phosphorylation of histone H2A.X, indicative of fewer DSBs. This suggests that VCP/p97 is required for the proteasomal degradation of TOP2-DNA covalent complexes and is thus likely to be an important mediator of DSB repair after treatment with a TOP2 poison. SIGNIFICANCE STATEMENT: TOP2 poisons are chemotherapeutic agents used in the treatment of a range of cancers. A better understanding of how TOP2 poison-induced DNA damage is repaired could improve therapy with TOP2 poisons by increasing TOP2 poison cytotoxicity and reducing genotoxicity. The results presented herein suggest that repair of TOP2-DNA covalent complexes involves the protein segregase VCP/p97.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。