Green synthesis of self-oriented flower-like Ag@Ag2O nanostructures functionalized with L-Tryptophan for colorimetric simultaneous determination of ultra-trace level of thiamin and riboflavin

绿色合成自取向花状 Ag@Ag2O 纳米结构并用 L-色氨酸进行功能化,用于比色法同时测定超痕量硫胺素和核黄素

阅读:6
作者:Maryam Abbasi Tarighat, Zahra Khosravani, Gholamreza Abdi

Abstract

The study focuses on the green synthesis of Ag@Ag2O nanostructures using Padina algae extract and functionalizing them with L-tryptophan to enhance their properties as a colorimetric sensor for simultaneous detection of ultra-trace levels of thiamin and riboflavin. The nanostructures are characterized using techniques like XRD, FESEM, FTIR, TEM, AFM, and DLS to understand their morphology, structure, and interactions with target molecules. FESEM analysis revealed the hierarchical flower-like Ag@Ag2O nanostructures. The TEM image shows the formation of core-shell nanostructures. Also, DLS analysis and surface zeta potential spectra illustrated the aggregated nature of fabricated nanocomposites in the presence of vitamins. The study is the first to report simultaneous determination of thiamin and riboflavin using a colorimetric sensor based on Ag@Ag2O-L-Try nanocomposites using partial leas square (PLS). The dynamic range of thiamin and riboflavin was achieved in 0.1 mol L-1 acetate buffer pH 4 and the ratio Ag@Ag2O: L-try 1:1. The Ag@Ag2O-L-Try sensor exhibited two linear ranges of 0.1- 1.0 and 3-350 µMol L- 1 for riboflavin and a linear range 3.0-60 µMol L- 1 for thiamin. Also, low detection limit of 1.92 µMol L- 1 and 0.048 µMol L- 1 was obtained for riboflavin and thiamin, respectively. The results indicated that the success of the method depends on the selective and sensitive colorimetric assay of the sensor along with the simultaneous determination by the PLS algorithm. Hence, the proposed technique can be used for the accurate and precise determination of vitamins in different pharmaceutical syrup and tablet samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。