Lead-Free Sodium Potassium Niobate-Based Multilayer Structures for Ultrasound Transducer Applications

用于超声波换能器应用的无铅铌酸钠钾基多层结构

阅读:5
作者:Danjela Kuscer, Brigita Kmet, Silvo Drnovšek, Julien Bustillo, Franck Levassort

Abstract

Thick films with nominal composition (K0.5Na0.5)0.99Sr0.005NbO3 (KNNSr) on porous ceramics with identical nominal composition were investigated as potential candidates for environmentally benign ultrasonic transducers composed entirely of inorganic materials. In this paper, the processing of the multilayer structure, namely, the thick film by screen printing and the porous ceramic by sacrificial template method, is related to their phase composition, microstructure, electromechanical, and acoustic properties to understand the performance of the devices. The ceramic with a homogeneous distribution of 8 μm pores had a sufficiently high attenuation coefficient of 0.5 dB/mm/MHz and served as an effective backing. The KNNSr thick films sintered at 1100 °C exhibited a homogeneous microstructure and a relative density of 97%, contributing to a large dielectric permittivity and elastic constant and yielding a thickness coupling factor kt of ~30%. The electroacoustic response of the multilayer structure in water provides a centre frequency of 15 MHz and a very large fractional bandwidth (BW) of 127% at -6 dB. The multilayer structure is a candidate for imaging applications operating above 15 MHz, especially by realising focused-beam structure through lenses to further increase the sensitivity in the focal zone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。