Widespread misinterpretable ChIP-seq bias in yeast

酵母中普遍存在可误解的 ChIP-seq 偏差

阅读:7
作者:Daechan Park, Yaelim Lee, Gurvani Bhupindersingh, Vishwanath R Iyer

Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to detect genome-wide interactions between a protein of interest and DNA in vivo. Loci showing strong enrichment over adjacent background regions are typically considered to be sites of binding. Insufficient attention has been given to systematic artifacts inherent to the ChIP-seq procedure that might generate a misleading picture of protein binding to certain loci. We show here that unrelated transcription factors appear to consistently bind to the gene bodies of highly transcribed genes in yeast. Strikingly, several types of negative control experiments, including a protein that is not expected to bind chromatin, also showed similar patterns of strong binding within gene bodies. These false positive signals were evident across sequencing platforms and immunoprecipitation protocols, as well as in previously published datasets from other labs. We show that these false positive signals derive from high rates of transcription, and are inherent to the ChIP procedure, although they are exacerbated by sequencing library construction procedures. This expression bias is strong enough that a known transcriptional repressor like Tup1 can erroneously appear to be an activator. Another type of background bias stems from the inherent nucleosomal structure of chromatin, and can potentially make it seem like certain factors bind nucleosomes even when they don't. Our analysis suggests that a mock ChIP sample offers a better normalization control for the expression bias, whereas the ChIP input is more appropriate for the nucleosomal periodicity bias. While these controls alleviate the effect of the biases to some extent, they are unable to eliminate it completely. Caution is therefore warranted regarding the interpretation of data that seemingly show the association of various transcription and chromatin factors with highly transcribed genes in yeast.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。