Histone decacetylase inhibitors prevent mitochondrial fragmentation and elicit early neuroprotection against MPP+

组蛋白去乙酰化酶抑制剂可防止线粒体碎裂并引发针对 MPP+ 的早期神经保护

阅读:8
作者:Min Zhu, Wen-Wei Li, Chuan-Zhen Lu

Background

Parkinson's disease (PD) is a common neurodegenerative disease, characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra. Recent investigations have shown that mitochondrial fragmentation, an early event during apoptosis, is implicated in the degeneration of DA neurons in PD, and more importantly, preventing mitochondrial fragmentation could rescue cell death in several PD models. Therefore, mitochondrial dynamics may be a therapeutic target for early intervention in PD. However, much remains unknown about the mechanism underlying mitochondrial fragmentation in PD.

Conclusions

Histone deacetylase inhibitors prevent mitochondrial fragmentation and elicit early neuroprotection in PD cell model induced by MPP+. Hence, HDAC inhibitors may be a potential early treatment for PD.

Methods

The alterations in mitochondrial morphology, cell apoptosis, and mitochondrial shaping protein levels were detected after SH-SY5Y cells were treated with various doses of MPP+ or rotenone.

Results

Mitochondrial fragmentation is an early event during apoptosis caused by MPP+ but not rotenone, and Trichostatin A (TSA), a commonly used histone deacetylase (HDAC) inhibitor, selectively rescues mitochondrial fragmentation and cell death induced by lower doses of MPP+. Mitochondrial fragmentation triggered by lower doses of MPP+ may be a result of Mfn2 down-regulation, which could be completely reversed by TSA. Further investigation suggests that TSA prevents MPP+-induced Mfn2 down-regulation via inhibiting histone deacetylation over Mfn2 promoter and alleviating its transcriptional dysfunction. Conclusions: Histone deacetylase inhibitors prevent mitochondrial fragmentation and elicit early neuroprotection in PD cell model induced by MPP+. Hence, HDAC inhibitors may be a potential early treatment for PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。