Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters

G-box 元件的核心和侧翼序列的变化导致天然和合成大豆启动子中基因表达的增加和减少

阅读:5
作者:Ning Zhang, Leah K McHale, John J Finer

Abstract

Cis-regulatory elements in promoters are major determinants of binding specificity of transcription factors (TFs) for transcriptional regulation. To improve our understanding of how these short DNA sequences regulate gene expression, synthetic promoters consisting of both classical (CACGTG) and variant G-box core sequences along with different flanking sequences derived from the promoters of three different highly expressing soybean genes, were constructed and used to regulate a green fluorescent protein (gfp) gene. Use of the classical 6-bp G-box provided information on the base level of GFP expression while modifications to the 2-4 flanking bases on either side of the G-box influenced the intensity of gene expression in both transiently transformed lima bean cotyledons and stably transformed soybean hairy roots. The proximal 2-bp sequences on either flank of the G-box significantly affected G-box activity, while the distal 2-bp flanking nucleotides also influenced gene expression albeit with a decreasing effect. Manipulation of the upstream 2- to 4-bp flanking sequence of a G-box variant (GACGTG), found in the proximal region of a relatively weak soybean glycinin promoter, significantly enhanced promoter activity using both transient and stable expression assays, if the G-box variant was first converted into a classical G-box (CACGTG). In addition to increasing our understanding of regulatory element composition and structure, this study shows that minimal targeted changes in native promoter sequences can lead to enhanced gene expression, and suggests that genome editing of the promoter region can result in useful and predictable changes in native gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。