Electric Field-Assisted In Situ Precise Deposition of Electrospun γ-Fe2O3/Polyurethane Nanofibers for Magnetic Hyperthermia

电场辅助原位精确沉积电纺γ-Fe2O3/聚氨酯纳米纤维用于磁热疗

阅读:6
作者:Chao Song, Xiao-Xiong Wang, Jun Zhang, Guang-Di Nie, Wei-Ling Luo, Jie Fu, Seeram Ramakrishna, Yun-Ze Long

Abstract

A facial electrospinning method of in situ precise fabricating magnetic fibrous membrane composed of polyurethane (PU) nanofibers decorated with superparamagnetic γ-Fe2O3 nanoparticles with simultaneous heat generation in response to alternating magnetic field (AMF) is reported. In this method, a conical aluminum auxiliary electrode is used to regulate the electrostatic field and affect the process of electrospinning for the in situ rapid and precise deposition of electrospun γ-Fe2O3/PU fibers. The auxiliary conical electrode can extend the jet stabilization zone of the precursor solution four times longer than that of without auxiliary electrode, which can achieve the precise control of the fiber deposition area. Moreover, the electrospun composite fibrous membranes show a rapid temperature increase from room temperature to 43 °C in 70 s under the AMF, which exhibits faster heating rate and higher heating temperature compared to the samples fabricated without the assist of the auxiliary electrode. The present results demonstrate that the in situ precise electrospinning with the help of an auxiliary conical electrode has the potential as a manipulative method for preparing magnetic composite fibers as well as magnetic hyperthermia of cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。