Optimization Conditions to Obtain Cationic Polyacrylamide Emulsion Copolymers with Desired Cationic Degree for Different Wastewater Treatments

针对不同废水处理需要获得所需阳离子度的阳离子聚丙烯酰胺乳液共聚物的优化条件

阅读:6
作者:Tung Huy Nguyen, Linh Pham Duy Nguyen, Thao Thi Phuong Nguyen, Minh Xuan Anh Le, Linh Thi Thuy Kieu, Huong Thi To, Thanh Tien Bui

Abstract

The synthesis of cationic polyacrylamides (CPAMs) with the desired cationic degree and molecular weight is essential for various industries, including wastewater treatment, mining, paper, cosmetic chemistry, and others. Previous studies have already demonstrated methods to optimize synthesis conditions to obtain high-molecular-weight CPAM emulsions and the effects of cationic degrees on flocculation processes. However, the optimization of input parameters to obtain CPAMs with the desired cationic degrees has not been discussed. Traditional optimization methods are time-consuming and costly when it comes to on-site CPAM production because the input parameters of CPAM synthesis are optimized using single-factor experiments. In this study, we utilized the response surface methodology to optimize the synthesis conditions, specifically the monomer concentration, the content of the cationic monomer, and the content of the initiator, to obtain CPAMs with the desired cationic degrees. This approach overcomes the drawbacks of traditional optimization methods. We successfully synthesized three CPAM emulsions with a wide range of cationic degrees: low (21.85%), medium (40.25%), and high (71.17%) levels of cationic degree. The optimized conditions for these CPAMs were as follows: monomer concentration of 25%, content of monomer cation of 22.5%, 44.41%, and 77.61%, respectively, and initiator content of 0.475%, 0.48%, and 0.59%, respectively. The developed models can be utilized to quickly optimize conditions for synthesizing CPAM emulsions with different cationic degrees to meet the demands of wastewater treatment applications. The synthesized CPAM products performed effectively in wastewater treatment, with the treated wastewater meeting the technical regulation parameters. 1H-NMR, FTIR, SEM, BET, dynamic light scattering, and gel permeation chromatography were employed to confirm the structure and surface of the polymers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。