Novel AXL-specific inhibitor ameliorates kidney dysfunction through the inhibition of epithelial-to-mesenchymal transition of renal tubular cells

新型 AXL 特异性抑制剂通过抑制肾小管细胞上皮-间质转化改善肾功能障碍

阅读:4
作者:Atsuo Kurata, Yukako Tachibana, Tadakatsu Takahashi, Naoshi Horiba

Abstract

Chronic kidney diseases affect more than 800 million people globally and remain a high unmet need. Various therapeutic targets are currently under evaluation in pre-clinical and clinical studies. Because the growth arrest specific gene 6 (Gas6)/AXL pathway has been implicated in the pathogenesis of kidney diseases, we generated a novel selective and potent AXL inhibitor, CH5451098, and we evaluated its efficacy and elucidated its mechanism in an NEP25 mouse model that follows the clinical course of glomerular nephritis. In this model, CH5451098 significantly ameliorated the excretion of urinary albumin and elevation of serum creatinine. Additionally, it also inhibited tubulointerstitial fibrosis and tubular damage. To elucidate the mechanism behind these changes, we analyzed the effect of CH5451098 against transforming growth factor β1 (TGFβ1) and Gas6, which is a ligand of AXL receptor, in NRK-52E renal tubular epithelial cells. CH5451098 inhibited epithelial-to-mesenchymal transition (EMT) caused by the synergistic effects of TGFβ1 and Gas6 in NRK-52E cells. This inhibition was also observed in NEP25 mice. Taken together, these results suggest that CH5451098 could ameliorate kidney dysfunction in glomerular nephritis by inhibiting EMT in tubular cells. These results reveal that AXL strongly contributes to the disease progression of glomerular nephritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。