Etanercept prevents airway hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs

依那西普通过保护抗原攻击豚鼠的神经元 M2 毒蕈碱受体来预防气道高反应性

阅读:7
作者:Zhenying Nie, David B Jacoby, Allison D Fryer

Background and purpose

Increased tumour necrosis factor-alpha (TNF-alpha) is associated with airway hyperreactivity in antigen-challenged animals. In human asthmatics, TNF-alpha is increased and blocking it prevents airway hyperreactivity in some asthmatic patients. However, the mechanisms by which TNF-alpha mediates hyperreactivity are unknown. Airway hyperreactivity can be caused by dysfunction of neuronal M(2) muscarinic receptors that normally limit acetylcholine release from parasympathetic nerves. Here we test whether blocking TNF-alpha receptors with etanercept prevents M(2) receptor dysfunction and airway hyperreactivity in antigen-challenged guinea pigs. Experimental approach: Ovalbumin-sensitized guinea pigs were challenged by inhalation of antigen. Some animals received etanercept (3 mg kg(-1) i.p.) 3 h before challenge. 24 h after challenge, airway hyperreactivity and M(2) receptor function were tested. Inflammatory cells in bronchoalveolar lavage, blood and lung were counted. TNF-alpha and its receptors were detected by real-time RT-PCR and immunocytochemistry in parasympathetic nerves from humans and guinea pigs and in human neuroblastoma cells. Key

Purpose

Increased tumour necrosis factor-alpha (TNF-alpha) is associated with airway hyperreactivity in antigen-challenged animals. In human asthmatics, TNF-alpha is increased and blocking it prevents airway hyperreactivity in some asthmatic patients. However, the mechanisms by which TNF-alpha mediates hyperreactivity are unknown. Airway hyperreactivity can be caused by dysfunction of neuronal M(2) muscarinic receptors that normally limit acetylcholine release from parasympathetic nerves. Here we test whether blocking TNF-alpha receptors with etanercept prevents M(2) receptor dysfunction and airway hyperreactivity in antigen-challenged guinea pigs. Experimental approach: Ovalbumin-sensitized guinea pigs were challenged by inhalation of antigen. Some animals received etanercept (3 mg kg(-1) i.p.) 3 h before challenge. 24 h after challenge, airway hyperreactivity and M(2) receptor function were tested. Inflammatory cells in bronchoalveolar lavage, blood and lung were counted. TNF-alpha and its receptors were detected by real-time RT-PCR and immunocytochemistry in parasympathetic nerves from humans and guinea pigs and in human neuroblastoma cells. Key

Results

Antigen-challenged animals were hyperreactive to vagal stimulation and neuronal M(2) receptors were dysfunctional. Both M(2) receptor dysfunction and airway hyperreactivity were prevented by etanercept. Etanercept reduced eosinophils around airway nerves, and in blood, bronchoalveolar lavage and airway smooth muscle. Also, TNF-alpha decreased M(2) receptor mRNA in human and guinea pig parasympathetic neurons. Conclusions and implications: Tumour necrosis factor-alpha may contribute to M(2) receptor dysfunction and airway hyperreactivity directly by decreasing receptor expression and indirectly by promoting recruitment of eosinophils, containing major basic protein, an M(2) antagonist. This suggests that etanercept may be beneficial in treatment of allergic asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。