Age-related changes of cystatin C expression and polarized secretion by retinal pigment epithelium: potential age-related macular degeneration links

胱抑素 C 表达和视网膜色素上皮极化分泌的年龄相关性变化:与年龄相关性黄斑变性的潜在联系

阅读:14
作者:Paul Kay, Yit C Yang, Paul Hiscott, Donna Gray, Arvydas Maminishkis, Luminita Paraoan

Conclusions

Exposure to AGEs reduces expression of cystatin C and affects its normal secretion in cultured RPE. Age-related changes of cystatin C in the RPE from the posterior pole may compromise its extracellular functions, potentially contributing to AMD pathogenesis.

Methods

Confluent monolayers of human fetal RPE (hfRPE) cells were cultured using an in vitro model mimicking extracellular AGE accumulation. Cystatin C expression, secretion, and its polarity were analyzed following culture on AGE-containing BrM mimics (AGEd versus non-AGEd). Monolayer barrier properties were assessed by transepithelial resistance measurements. The relative level of cystatin C protein expression in human RPE in situ was assessed immunohistochemically in relation to age.

Purpose

Cystatin C, a potent cysteine proteinase inhibitor, is abundantly secreted by the RPE and may contribute to regulating protein turnover in the Bruch's membrane (BrM). A cystatin C variant associated with increased risk of developing AMD and Alzheimer's disease (AD) presents reduced secretion levels from RPE. The purpose of this study was to analyze the effects of age and the accumulation of advanced glycation end-products (AGEs) on the expression and secretion of cystatin C by the RPE.

Results

Advanced glycation end product-exposed RPE monolayers presented significantly decreased cystatin C expression and secretion. Basolateral secretion was fully established by week 8 in non-AGEd conditions. In AGEd cultures, polarity of secretion was impaired despite maintenance of physiological barrier properties of the monolayer. In the macula region of RPE/choroid segments from human eyes, the level of cystatin C protein was reduced with increasing donor age. Conclusions: Exposure to AGEs reduces expression of cystatin C and affects its normal secretion in cultured RPE. Age-related changes of cystatin C in the RPE from the posterior pole may compromise its extracellular functions, potentially contributing to AMD pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。