Distinct Ca2+ sources in dendritic spines of hippocampal CA1 neurons couple to SK and Kv4 channels

海马 CA1 神经元树突棘中不同的 Ca2+ 源与 SK 和 Kv4 通道耦合

阅读:5
作者:Kang Wang, Mike T Lin, John P Adelman, James Maylie

Abstract

Small conductance Ca(2+)-activated K(+) (SK) channels and voltage-gated A-type Kv4 channels shape dendritic excitatory postsynaptic potentials (EPSPs) in hippocampal CA1 pyramidal neurons. Synaptically evoked Ca(2+) influx through N-methyl-D-aspartate receptors (NMDARs) activates spine SK channels, reducing EPSPs and the associated spine head Ca(2+) transient. However, results using glutamate uncaging implicated Ca(2+) influx through SNX-482-sensitive (SNX-sensitive) Cav2.3 (R-type) Ca(2+) channels as the Ca(2+) source for SK channel activation. The present findings show that, using Schaffer collateral stimulation, the effects of SNX and apamin are not mutually exclusive and SNX increases EPSPs independent of SK channel activity. Dialysis with 1,2-bis(o-aminophenoxy)ethane-N'N'N'-tetraacetic acid (BAPTA), application of 4-Aminopyridine (4-AP), expression of a Kv4.2 dominant negative subunit, and dialysis with a KChIPs antibody occluded the SNX-induced increase of EPSPs. The results suggest two distinct Ca(2+) signaling pathways within dendritic spines that link Ca(2+) influx through NMDARs to SK channels and Ca(2+) influx through R-type Ca(2+) channels to Kv4.2-containing channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。