Molecular profiling of single Sca-1+/CD34+,- cells--the putative murine lung stem cells

单个 Sca-1+/CD34+,- 细胞的分子分析——假定的小鼠肺干细胞

阅读:9
作者:Markus Hittinger, Zbigniew T Czyz, Yves Huesemann, Matthias Maneck, Catherine Botteron, Stephanie Kaeufl, Christoph A Klein, Bernhard Polzer

Abstract

Murine bronchioalveolar stem cells play a key role in pulmonary epithelial maintenance and repair but their molecular profile is poorly described so far. In this study, we used antibodies directed against Sca-1 and CD34, two markers originally ascribed to pulmonary cells harboring regenerative potential, to isolate single putative stem cells from murine lung tissue. The mean detection rate of positive cells was 8 per 10(6) lung cells. We then isolated and globally amplified the mRNA of positive cells to analyze gene expression in single cells. The resulting amplicons were then used for molecular profiling by transcript specific polymerase chain reaction (PCR) and global gene expression analysis using microarrays. Single marker-positive cells displayed a striking heterogeneity for the expression of epithelial and mesenchymal transcripts on the single cell level. Nevertheless, they could be subdivided into two cell populations: Sca-1(+)/CD34(-) and Sca-1(+)/CD34(+) cells. In these subpopulations, transcripts of the epithelial marker Epcam (CD326) were exclusively detected in Sca-1(+)/CD34(-) cells (p = 0.03), whereas mRNA of the mesenchymal marker Pdgfrα (CD140a) was detected in both subpopulations and more frequently in Sca-1(+)/CD34(+) cells (p = 0.04). FACS analysis confirmed the existence of a Pdgfrα positive subpopulation within Epcam(+)/Sca-1(+)/CD34(-) epithelial cells. Gene expression analysis by microarray hybridization identified transcripts differentially expressed between the two cell types as well as between epithelial reference cells and Sca-1(+)/CD34(+) single cells, and selected transcripts were validated by quantitative PCR. Our results suggest a more mesenchymal commitment of Sca-1(+)/CD34(+) cells and a more epithelial commitment of Sca-1(+)/CD34(-) cells. In summary, the study shows that single cell analysis enables the identification of novel molecular markers in yet poorly characterized populations of rare cells. Our results could further improve our understanding of Sca-1(+)/CD34(+,-) cells in the biology of the murine lung.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。