Synthesis and Characterization of Novel Magnetic Nano-Biocomposite Hydrogels Based on Starch- g-poly(acrylic acid) Reinforced by Cellulose Nanofibers for Cu2+ Ion Removal

基于淀粉-g-聚丙烯酸的新型磁性纳米生物复合水凝胶的合成与表征及纤维素纳米纤维增强用于去除 Cu2+ 离子

阅读:6
作者:Nasime Mirhoseini Renani, Nasrin Etesami, Tayebeh Behzad

Abstract

One of the crucial challenges of the adsorption process is to recapture the adsorbent from the solution, especially for adsorbents in powder form. This study synthesized a novel magnetic nano-biocomposite hydrogel adsorbent to successfully remove Cu2+ ions, followed by convenient recovery and reusability of the adsorbent. The Cu2+ adsorption capacity of starch-g-poly(acrylic acid)/cellulose nanofibers (St-g-PAA/CNFs) composite hydrogel and magnetic composite hydrogel (M-St-g-PAA/CNFs) was investigated and compared in both bulk and powder forms. Results showed that Cu2+ removal kinetics and swelling rate were improved by grinding the bulk hydrogel into powder form. The kinetic data and adsorption isotherm were best correlated with the pseudo-second-order and Langmuir models, respectively. The maximum monolayer adsorption capacity values of M-St-g-PAA/CNFs hydrogels loaded with 2 and 8 wt % Fe3O4 nanoparticles in 600 mg/L Cu2+ solution were found to be 333.33 and 555.56 mg/g, respectively, compared to 322.58 mg/g for the St-g-PAA/CNFs hydrogel. Vibrating sample magnetometry (VSM) results demonstrate that the magnetic hydrogel that included 2 and 8 wt % magnetic nanoparticles exhibited paramagnetic behavior with the magnetization of 0.6-0.66 and 1-1.04 emu/g at the plateau, respectively, which showed a proper magnetic property and good magnetic attraction in the magnetic field for separating the adsorbent from the solution. Also, the synthesized compounds were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). Finally, the magnetic bioadsorbent was successfully regenerated and reused for four treatment cycles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。