Characterization of Silver Nanoparticle Systems from Microalgae Acclimated to Different CO2 Atmospheres

适应不同 CO2 气氛的微藻银纳米粒子系统的表征

阅读:5
作者:Shirley Mora-Godínez, Flavio F Contreras-Torres, Adriana Pacheco

Abstract

Green synthesis of metallic nanoparticles using microalgae exposed to high CO2 atmospheres has not been studied in detail; this is of relevance in biological CO2 mitigation systems where considerable biomass is produced. In this study, we further characterized the potential of an environmental isolate Desmodesmus abundans acclimated to low and high CO2 atmospheres [low carbon acclimation (LCA) and high carbon acclimation (HCA) strains, respectively] as a platform for silver nanoparticle (AgNP) synthesis. As previously characterized, cell pellets at pH 11 were selected from the biological components tested of the different microalgae, which included the culture collection strain Spirulina platensis. AgNP characterization showed superior performance of strain HCA components as preserving the supernatant resulted in synthesis in all pH conditions. Size distribution analysis evidenced strain HCA cell pellet platform (pH 11) as the most homogeneous AgNP population (14.9 ± 6.4 nm diameter, -32.7 ± 5.3 mV) followed by S. platensis (18.3 ± 7.5 nm, -33.9 ± 2.4 mV). In contrast, strain LCA presented a broader population where the size was above 100 nm (127.8 ± 14.8 nm, -26.7 ± 2.4 mV). Fourier-transform infrared and Raman spectroscopies showed that the reducing power of microalgae might be attributed to functional groups in the cell pellet from proteins, carbohydrates, and fatty acids and, in the supernatant, from amino acids, monosaccharides, disaccharides, and polysaccharides. Microalgae AgNPs exhibited similar antimicrobial properties in the agar diffusion test against Escherichia coli. However, they were not effective against Gram (+) Lactobacillus plantarum. It is suggested that a high CO2 atmosphere potentiates components in the D. abundans strain HCA for nanotechnology applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。