Imbalances in protein homeostasis caused by mutant desmin

突变的结蛋白导致蛋白质稳态失衡

阅读:6
作者:L Winter, A Unger, C Berwanger, M Spörrer, M Türk, F Chevessier, K-H Strucksberg, U Schlötzer-Schrehardt, I Wittig, W H Goldmann, K Marcus, W A Linke, C S Clemen, R Schröder

Aims

We investigated newly generated immortalized heterozygous and homozygous R349P desmin knock-in myoblasts in conjunction with the corresponding desminopathy mice as models for desminopathies to analyse major protein quality control processes in response to the presence of R349P mutant desmin.

Conclusions

Our findings demonstrate that the presence of R349P mutant desmin causes a general imbalance in skeletal muscle protein homeostasis via aberrant activity of all major protein quality control systems. The augmented activity of these systems and the subcellular shift of essential heat shock proteins may deleteriously contribute to the previously observed increased turnover of desmin itself and desmin-binding partners, which triggers progressive dysfunction of the extrasarcomeric cytoskeleton and the myofibrillar apparatus in the course of the development of desminopathies.

Methods

We used hetero- and homozygous R349P desmin knock-in mice for analyses and for crossbreeding with p53 knock-out mice to generate immortalized R349P desmin knock-in skeletal muscle myoblasts and myotubes. Skeletal muscle sections and cultured muscle cells were investigated by indirect immunofluorescence microscopy, proteasomal activity measurements and immunoblotting addressing autophagy rate, chaperone-assisted selective autophagy and heat shock protein levels. Muscle sections were further analysed by transmission and immunogold electron microscopy.

Results

We demonstrate that mutant desmin (i) increases proteasomal activity, (ii) stimulates macroautophagy, (iii) dysregulates the chaperone assisted selective autophagy and (iv) elevates the protein levels of αB-crystallin and Hsp27. Both αB-crystallin and Hsp27 as well as Hsp90 displayed translocation patterns from Z-discs as well as Z-I junctions, respectively, to the level of sarcomeric I-bands in dominant and recessive desminopathies. Conclusions: Our findings demonstrate that the presence of R349P mutant desmin causes a general imbalance in skeletal muscle protein homeostasis via aberrant activity of all major protein quality control systems. The augmented activity of these systems and the subcellular shift of essential heat shock proteins may deleteriously contribute to the previously observed increased turnover of desmin itself and desmin-binding partners, which triggers progressive dysfunction of the extrasarcomeric cytoskeleton and the myofibrillar apparatus in the course of the development of desminopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。