Improvement of Electroacupuncture on APP/PS1 Transgenic Mice in Spatial Learning and Memory Probably due to Expression of A β and LRP1 in Hippocampus

电针对APP/PS1转基因小鼠空间学习记忆能力的改善可能与海马Aβ和LRP1表达有关

阅读:6
作者:Xin Wang, Yanhuan Miao, Jiawula Abulizi, Fu Li, Yuping Mo, Weiguo Xue, Zhigang Li

Abstract

Objectives. To explore the alterations of β-amyloid (Aβ) and low density lipoprotein receptor-related protein-1 (LRP1) in APP/PS1 mice after electroacupuncture (EA) treatment and further to explore the mechanism. Methods. Forty 6-month-old APP/PS1 mice were randomly divided into a model group and an EA group, with twenty wild-type mice used as a normal control group. Mice in the EA group were treated with EA at GV 20 (băi huì) and bilateral KI 1 (yŏng quán) acupoints for 6 weeks. The Morris water maze was applied to assess the spatial memory in behavior. Immunohistochemistry (IHC), ELISA, Western blotting, and so forth were used to observe the expression of LRP1 and Aβ. Results. The Morris water maze test showed that, compared with the normal control group, the model group's learning and memory capabilities were significantly decreased (P < 0.05; P < 0.01). The EA group was reversed (P < 0.05; P < 0.01). The hippocampal expression of Aβ in the EA group was significantly decreased compared to the model group (P < 0.01). The expression of LRP1 in the model group was significantly lower than that in the normal control group (P < 0.01); the expression in the EA group was significantly higher than that in the model group (P < 0.01). Conclusions. EA therapy can improve the learning and memory capabilities of APP/PS1 mice. The underlying mechanism may lie in the upregulation of an Aβ transport receptor and LRP1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。