Receptor for activated C kinase 1 promotes cervical cancer lymph node metastasis via the glycolysis‑dependent AKT/mTOR signaling

活化 C 激酶 1 受体通过糖酵解依赖性 AKT/mTOR 信号传导促进宫颈癌淋巴结转移

阅读:4
作者:Lixiu Xu, Jinqiu Li, Mikrban Tursun, Yan Hai, Hatila Tursun, Batur Mamtimin, Ayshamgul Hasim

Abstract

Cervical cancer (CC), an aggressive form of squamous cell carcinoma, is characterized by early‑stage lymph node metastasis and an extremely poor prognosis. The authors have previously demonstrated that patients with CC have aberrant glycolysis. The upregulation of receptor for activated C kinase 1 (RACK1) is associated with CC lymph node metastasis (LNM). However, its role in mediating aerobic glycolysis in CC LNM remains unclear. In the present study, 1H nuclear magnetic resonance analysis revealed a significant association between RACK1 expression and the glycolysis/gluconeogenesis pathway. Additionally, RACK1 knockdown inhibited aerobic glycolysis and lymphangiogenesis in vitro and suppressed CC LNM in vivo. Furthermore, protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling was identified as a critical RACK1‑regulated pathway that increased lymphangiogenesis in CC. Co‑immunoprecipitation, immunofluorescence and western blot analysis revealed that RACK1 activated AKT/mTOR signaling by interacting with insulin‑like growth factor 1 receptor (IGF1R). POU class 2 homeobox 2 (POU2F2) bound to the RACK1 promoter and regulated its transcription, thereby functionally contributing to glycolysis and lymphangiogenesis in CC. Of note, the administration of 2‑deoxy‑D‑glucose, which attenuates glycolysis, inhibited RACK1‑induced lymphangiogenesis in CC. The correlations between RACK1, IGF1R, POU2F2 and hexokinase 2 were further confirmed in CC tissues. Thus, RACK1 plays a crucial role in CC tumor LNM by regulating glycolysis via IGF1R/AKT/mTOR signaling. Thus, the targeting of the POU2F2/RACK1/IGF1R/AKT/mTOR signaling pathway may provide a novel treatment strategy for CC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。