A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration

一种具有持续药物输送功能的仿生大孔混合支架,可增强骨再生

阅读:5
作者:Seunghun S Lee, Matthias Santschi, Stephen J Ferguson

Abstract

Bone regeneration is a highly complex physiological process regulated by several factors. In particular, bone-mimicking extracellular matrix and available osteogenic growth factors such as bone morphogenetic protein (BMP) have been regarded as key contributors for bone regeneration. In this study, we developed a biomimetic hybrid scaffold (CEGH) with sustained release of BMP-2 that would result in enhanced bone formation. This hybrid scaffold, composed of BMP-2-loaded cryoelectrospun poly(ε-caprolactone) (PCL) (CE) surrounded by a macroporous gelatin/heparin cryogel (GH), is designed to overcome the drawbacks of the relatively weak mechanical properties of cryogels and poor biocompatibility and hydrophobicity of electrospun PCL. The GH component of the hybrid scaffold provides a hydrophilic surface to improve the biological response of the cells, while the CE component increases the mechanical strength of the scaffold to provide enhanced mechanical support for the defect area and a stable environment for osteogenic differentiation. After analyzing characteristics of the hybrid scaffold such as hydrophilicity, pore difference, mechanical properties, and surface charge, we confirmed that the hybrid scaffold shows enhanced cell proliferation rate and apatite formation in simulated body fluid. Then, we evaluated drug release kinetics of CEGH and confirmed the sustained release of BMP-2. Finally, the enhanced osteogenic differentiation of CEGH with sustained release of BMP-2 was confirmed by Alizarin Red S staining and real-time PCR analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。