Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5' splice site: Generation of etoposide resistance in human leukemia K562 cells

使用同源定向修复的 CRISPR/Cas9 沉默人类拓扑异构酶 IIα 内含子-19 5' 剪接位点:在人类白血病 K562 细胞中产生依托泊苷耐药性

阅读:5
作者:Victor A Hernandez, Jessika Carvajal-Moreno, Xinyi Wang, Maciej Pietrzak, Jack C Yalowich, Terry S Elton

Abstract

DNA Topoisomerase IIα (TOP2α/170) is an enzyme essential for proliferating cells. For rapidly multiplying malignancies, this has made TOP2α/170 an important target for etoposide and other clinically active anticancer drugs. Efficacy of these agents is often limited by chemoresistance related to alterations in TOP2α/170 expression levels. Our laboratory recently demonstrated reduced levels of TOP2α/170 and overexpression of a C-terminal truncated 90-kDa isoform, TOP2α/90, due to intronic polyadenylation (IPA; within intron 19) in an acquired etoposide-resistant K562 clonal cell line, K/VP.5. We previously reported that this isoform heterodimerized with TOP2α/170 and was a determinant of acquired resistance to etoposide. Optimization of the weak TOP2α exon 19/intron 19 5' splice site in drug-resistant K/VP.5 cells by gene-editing restored TOP2α/170 levels, diminished TOP2α/90 expression, and circumvented drug resistance. Conversely, in the present study, silencing of the exon 19/intron 19 5' splice site in parental K562 cells by CRISPR/Cas9 with homology-directed repair (HDR), and thereby forcing intron 19 retention, was used to induce resistance by disrupting normal RNA processing (i.e., gene knockout), and to further evaluate the role of TOP2α/170 and TOP2α/90 isoforms as resistance determinants. Gene-edited clones were identified by quantitative polymerase chain reaction (qPCR) and verified by Sanger sequencing. TOP2α/170 mRNA/protein expression levels were attenuated in the TOP2α gene-edited clones which resulted in resistance to etoposide as assessed by reduced etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition. RNA-seq and qPCR studies suggested that intron 19 retention leads to decreased TOP2α/170 expression by degradation of the TOP2α edited mRNA transcripts. Forced expression of TOP2α/90 in the gene-edited K562 cells further decreased etoposide-induced DNA damage in support of a dominant negative role for this truncated isoform. Together results support the important role of both TOP2α/170 and TOP2α/90 as determinants of sensitivity/resistance to TOP2α-targeting agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。