Platelets from mice lacking the aryl hydrocarbon receptor exhibit defective collagen-dependent signaling

缺乏芳烃受体的小鼠的血小板表现出有缺陷的胶原蛋白依赖性信号传导

阅读:5
作者:S Lindsey, J Jiang, D Woulfe, E T Papoutsakis

Background

We previously identified aryl hydrocarbon receptor (AHR) as a novel regulator of megakaryocytic differentiation and polyploidization and reported that AHR-null mice have approximately 15% fewer platelets than do wild-type mice, yet they exhibit a dramatic, unexplained bleeding phenotype. Objectives: The current work tests our hypothesis that AHR-null platelets are functionally deficient, contributing to the previously reported (yet unexplained) bleeding phenotype present in AHR-null mice.

Conclusions

These results are consistent with a role for AHR in platelet function, especially as it relates to platelet aggregation and spreading in response to collagen. Our work suggests AHR is a critical component of the physiologic response that platelets undergo in response to collagen and may provide novel treatment options for patients with bleeding disorders.

Methods

AHR-null bone marrow was ex vivo differentiated with thrombopoietin with or without AHR ligands or AHR inhibitors and analyzed for degree of megakaryopoiesis and polyploidization. Platelet function of AHR-null mice was assessed with aggregation and spreading assays. Platelet signaling was examined using Western analysis and Rac activity assays.

Results

AHR ligands differentiate murine bone marrow-derived progenitors into polyploid megakaryocytes in the absence of thrombopoietin, and AHR inhibitors block thrombopoietin-induced megakaryocytic differentiation. Despite their responsiveness toward thrombin, AHR-null platelets demonstrate decreased aggregation and spreading in response to collagen compared with wild-type platelets. AHR-null platelets bind fibrinogen after stimulation with thrombin or AYPGKF and aggregate in response to AYPGKF and adenosine diphosphate. Mechanistically, AHR absence led to down-regulation of Vav1 and Vav3, altered phospholipase Cγ2 phosphorylation, decreased Rac1 activation, and reduced platelet activation in response to collagen. Conclusions: These results are consistent with a role for AHR in platelet function, especially as it relates to platelet aggregation and spreading in response to collagen. Our work suggests AHR is a critical component of the physiologic response that platelets undergo in response to collagen and may provide novel treatment options for patients with bleeding disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。