A spider silk-derived solubility domain inhibits nuclear and cytosolic protein aggregation in human cells

蜘蛛丝衍生的可溶性结构域可抑制人类细胞中的核蛋白和细胞质蛋白聚集

阅读:5
作者:Anna Katharina Schellhaus, Shanshan Xu, Maria E Gierisch, Julia Vornberger, Jan Johansson, Nico P Dantuma

Abstract

Due to the inherent toxicity of protein aggregates, the propensity of natural, functional amyloidogenic proteins to aggregate must be tightly controlled to avoid negative consequences on cellular viability. The importance of controlled aggregation in biological processes is illustrated by spidroins, which are functional amyloidogenic proteins that form the basis for spider silk. Premature aggregation of spidroins is prevented by the N-terminal NT domain. Here we explored the potential of the engineered, spidroin-based NT* domain in preventing protein aggregation in the intracellular environment of human cells. We show that the NT* domain increases the soluble pool of a reporter protein carrying a ligand-regulatable aggregation domain. Interestingly, the NT* domain prevents the formation of aggregates independent of its position in the aggregation-prone protein. The ability of the NT* domain to inhibit ligand-regulated aggregation was evident both in the cytosolic and nuclear compartments, which are both highly relevant for human disorders linked to non-physiological protein aggregation. We conclude that the spidroin-derived NT* domain has a generic anti-aggregation activity, independent of position or subcellular location, that is also active in human cells and propose that the NT* domain can potentially be exploited in controlling protein aggregation of disease-associated proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。