Neural Deletion of Glucose Transporter Isoform 3 Creates Distinct Postnatal and Adult Neurobehavioral Phenotypes

葡萄糖转运蛋白异构体 3 的神经缺失产生了不同的出生后和成年神经行为表型

阅读:7
作者:Bo-Chul Shin, Carlos Cepeda, Ana María Estrada-Sánchez, Michael S Levine, Laya Hodaei, Yun Dai, Jai Jung, Amit Ganguly, Peter Clark, Sherin U Devaskar

Abstract

We created a neural-specific conditional murine glut3 (Slc2A3) deletion (glut3flox/flox/nestin-Cre+) to examine the effect of a lack of Glut3 on neurodevelopment. Compared with age-matched glut3flox/flox = WT and heterozygotes (glut3flox/+/nestin-Cre+), we found that a >90% reduction in male and female brain Glut3 occurred by postnatal day 15 (PN15) in glut3flox/flox/nestin-Cre+ This genetic manipulation caused a diminution in brain weight and cortical thickness at PN15, a reduced number of dendritic spines, and fewer ultrasonic vocalizations. Patch-clamp recordings of cortical pyramidal neurons revealed increased frequency of bicuculline-induced paroxysmal discharges as well as reduced latency, attesting to a functional synaptic and cortical hyperexcitability. Concomitant stunting with lower glucose concentrations despite increased milk intake shortened the lifespan, failing rescue by a ketogenic diet. This led to creating glut3flox/flox/CaMK2α-Cre+ mice lacking Glut3 in the adult male limbic system. These mice had normal lifespan, displayed reduced IPSCs in cortical pyramidal neurons, less anxiety/fear, and lowered spatial memory and motor abilities but heightened exploratory and social responses. These distinct postnatal and adult phenotypes, based upon whether glut3 gene is globally or restrictively absent, have implications for humans who carry copy number variations and present with neurodevelopmental disorders.SIGNIFICANCE STATEMENT Lack of the key brain-specific glucose transporter 3 gene found in neurons during early postnatal life results in significant stunting, a reduction in dendritic spines found on neuronal processes and brain size, heightened neuronal excitability, along with a shortened lifespan. When occurring in the adult and limited to the limbic system alone, lack of this gene in neurons reduces the fear of spatial exploration and socialization but does not affect the lifespan. These features are distinct heralding differences between postnatal and adult phenotypes based upon whether the same gene is globally or restrictively lacking. These findings have implications for humans who carry copy number variations pertinent to this gene and have been described to present with neurodevelopmental disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。