The mechanism of Intralipid®-mediated cardioprotection complex IV inhibition by the active metabolite, palmitoylcarnitine, generates reactive oxygen species and activates reperfusion injury salvage kinases

Intralipid® 介导的心脏保护复合物 IV 抑制的机制是活性代谢物棕榈酰肉碱产生活性氧并激活再灌注损伤挽救激酶

阅读:10
作者:Phing-How Lou, Eliana Lucchinetti, Liyan Zhang, Andreas Affolter, Marcus C Schaub, Manoj Gandhi, Martin Hersberger, Blair E Warren, Hélène Lemieux, Hany F Sobhi, Alexander S Clanachan, Michael Zaugg

Background

Intralipid® administration at reperfusion elicits protection against myocardial ischemia-reperfusion injury. However, the underlying mechanisms are not fully understood.

Conclusions

Our data describe a new mechanism of postconditioning cardioprotection by the clinically available fat emulsion, Intralipid®. Protection is elicited by the fatty acid intermediate palmitoylcarnitine, and involves inhibition of complex IV, an increase in ROS production and activation of the RISK pathway.

Methods

Sprague-Dawley rat hearts were exposed to 15 min of ischemia and 30 min of reperfusion in the absence or presence of Intralipid® 1% administered at the onset of reperfusion. In separate experiments, the reactive oxygen species (ROS) scavenger N-(2-mercaptopropionyl)-glycine was added either alone or with Intralipid®. Left ventricular work and activation of Akt, STAT3, and ERK1/2 were used to evaluate cardioprotection. ROS production was assessed by measuring the loss of aconitase activity and the release of hydrogen peroxide using Amplex Red. Electron transport chain complex activities and proton leak were measured by high-resolution respirometry in permeabilized cardiac fibers. Titration experiments using the fatty acid intermediates of Intralipid® palmitoyl-, oleoyl- and linoleoylcarnitine served to determine concentration-dependent inhibition of complex IV activity and mitochondrial ROS release.

Results

Intralipid® enhanced postischemic recovery and activated Akt and Erk1/2, effects that were abolished by the ROS scavenger N-(2-mercaptopropionyl)glycine. Palmitoylcarnitine and linoleoylcarnitine, but not oleoylcarnitine concentration-dependently inhibited complex IV. Only palmitoylcarnitine reached high tissue concentrations during early reperfusion and generated significant ROS by complex IV inhibition. Palmitoylcarnitine (1 µM), administered at reperfusion, also fully mimicked Intralipid®-mediated protection in an N-(2-mercaptopropionyl)-glycine -dependent manner. Conclusions: Our data describe a new mechanism of postconditioning cardioprotection by the clinically available fat emulsion, Intralipid®. Protection is elicited by the fatty acid intermediate palmitoylcarnitine, and involves inhibition of complex IV, an increase in ROS production and activation of the RISK pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。