5,10-Methylenetetrahydrofolate reductase becomes phosphorylated during meiotic maturation in mouse oocytes

5,10-亚甲基四氢叶酸还原酶在小鼠卵母细胞减数分裂成熟过程中被磷酸化

阅读:7
作者:Kyla Young, Allison K Tscherner, Baohua Zhang, Megan Meredith, Taylor McClatchie, Jacquetta M Trasler, Jay M Baltz

Abstract

The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) links the folate cycle that produces one-carbon units with the methionine cycle that converts these into S-adenosylmethionine (SAM), the universal methyl donor for almost all methyltransferases. Previously, MTHFR has been shown to be regulated by phosphorylation, which suppresses its activity. SAM levels have been shown to increase substantially soon after initiation of meiotic maturation of the mouse germinal vesicle (GV) stage oocyte and then decrease back to their original low level in mature second meiotic metaphase (MII) eggs. As MTHFR controls the entry of one-carbon units into the methionine cycle, it is a candidate regulator of the SAM levels in oocytes and eggs. Mthfr transcripts are expressed in mouse oocytes and preimplantation embryos and MTHFR protein is present at each stage. In mature MII eggs, the apparent molecular weight of MTHFR was increased compared with GV oocytes, which we hypothesized was due to increased phosphorylation. The increase in apparent molecular weight was reversed by treatment with lambda protein phosphatase (LPP), indicating that MTHFR is phosphorylated in MII eggs. In contrast, LPP had no effect on MTHFR from GV oocytes, 2-cell embryos, or blastocysts. MTHFR was progressively phosphorylated after initiation of meiotic maturation, reaching maximal levels in MII eggs before decreasing again after egg activation. As phosphorylation suppresses MTHFR activity, it is predicted that MTHFR becomes inactive during meiotic maturation and is minimally active in MII eggs, which is consistent with the reported changes in SAM levels during mouse oocyte maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。