Identification of biomarker microRNAs for predicting the response of colorectal cancer to neoadjuvant chemoradiotherapy based on microRNA regulatory network

基于 microRNA 调控网络识别预测结直肠癌对新辅助放化疗反应的生物标志物 microRNA

阅读:6
作者:Yaqun Zhu, Qiliang Peng, Yuxin Lin, Li Zou, Peipei Shen, Feifei Chen, Ming Min, Li Shen, Jiajia Chen, Bairong Shen

Abstract

Preoperative radiotherapy or chemoradiotherapy has become a standard procedure for treatment of patients with locally advanced colorectal cancer (CRC). However, patients' responses to treatment are different and personalized. MicroRNAs (miRNAs) are promising biomarkers for predicting personalized responses. In this study, we collected 30 publicly reported miRNAs associated with chemoradiotherapy of CRC. We extracted 46 differentially expressed miRNAs from samples of responders and non-responders to preoperative radiotherapy from the Gene Expression Omnibus dataset (Student's t test, p-value < 0.05 and |fold-change| > 2). We performed a systematic and integrative bioinformatics analysis to identify biomarker miRNAs for prediction of CRC responses to chemoradiotherapy. Using the bioinformatics model, miR-198, miR-765, miR-671-5p, miR-630, miR-371-5p, miR-575, miR-202, miR-483-5p and miR-513a-5p were screened as putative biomarkers for treatment response. Literature validation and functional enrichment analysis were exploited to confirm the reliability of the predicted miRNAs. Quantitative polymerase chain reaction showed that seven of the candidates were significantly differentially expressed between radiosensitive and insensitive CRC cell lines. The unique target genes of miR-198 and miR-765 were altered significantly upon transfection of specific miRNA mimics in the radiosensitive cell line. These results demonstrated the predictive power of our model and suggested that miR-198, miR-765, miR-630, miR-371-5p, miR-575, miR-202 and miR-513a-5p could be used for predicting the response of CRC to preoperative chemoradiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。