Reactive Oxygen Species Formed by Secondary Organic Aerosols in Water and Surrogate Lung Fluid

水和替代肺液中的二次有机气溶胶形成的活性氧

阅读:7
作者:Haijie Tong, Pascale S J Lakey, Andrea M Arangio, Joanna Socorro, Fangxia Shen, Kurt Lucas, William H Brune, Ulrich Pöschl, Manabu Shiraiwa

Abstract

Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, β-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and β-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H2O2 and O2•-. The total molar yields of ROS of isoprene and β-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H2O2 and the adverse health effects of anthropogenic SOA from aromatic precursors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。