MicroRNA-497 regulates cisplatin chemosensitivity of cervical cancer by targeting transketolase

MicroRNA-497通过靶向转酮醇酶调节宫颈癌顺铂化疗敏感性

阅读:12
作者:Hui Yang, Xiao-Li Wu, Kai-Hua Wu, Rong Zhang, Li-Li Ju, Ying Ji, Yan-Wei Zhang, Song-Lin Xue, Ye-Xin Zhang, Yong-Feng Yang, Min-Min Yu

Abstract

Cervical cancer is one of the most lethal malignancies amongst women, partially because it is unresponsive to many chemotherapeutic drugs. The mechanism underlying cisplatin (DDP) resistance in cervical cancer remains largely elusive. In this study, by detecting the 12 most reported down-regulated miRNAs in chemotherapy-sensitive and -resistant cervical cancer cells, we found that miR-497 was significantly reduced in chemotherapy-resistant HeLa/DDP cells and contributed to DDP chemosensitivity. Transketolase (TKT), a thiamine-dependent enzyme that plays a role in the channeling of excess glucose phosphates to glycolysis in the pentose phosphate pathway, was identified as a direct target of miR-497. TKT expression in clinical specimens was characterized by immunohistochemistry and the result showed that TKT was highly expressed in 81.1% (60/74) of samples examined. Data from Oncomine databases revealed that TKT was significantly up-regulated in cervical cancer tissues compared to normal controls. Gain-of-function and loss-of-function studies showed that the miR-497/TKT axis was a critical modulator in DDP chemosensitivity as demonstrated by cell viability and apoptosis assays. Mechanistically, DDP chemosensitivity induced by the miR-497/TKT axis was associated with glutathione (GSH) depletion and reactive oxygen species (ROS) generation, and GSH treatment effectively abrogated miR-497/TKT-mediated chemosensitivity. In conclusion, these findings suggest that a deregulated miR-497/TKT axis has important implications in the cervical cancer cellular response to DDP, and thus targeting this axis may be a promising way to improve chemosensitivity in cervical cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。