Genipin Reverses HFD-Induced Liver Damage and Inhibits UCP2-Mediated Pyroptosis in Mice

京尼平可逆转 HFD 引起的小鼠肝损伤并抑制 UCP2 介导的细胞焦亡

阅读:6
作者:Hong Zhong, Mengting Liu, Yaya Ji, Minjuan Ma, Kun Chen, Tingming Liang, Chang Liu

Aims

Liver damage is a typical manifestation of nonalcoholic fatty liver disease (NAFLD). It originates from excessive fat accumulation, leading to hepatocyte death, inflammation, and fibrosis. Nonalcoholic steatohepatitis (NASH) is a type of NAFLD with a prevalence of 49% in morbidly obese patients. Pyroptosis plays an important role in the development of NASH; thus, it is important to elucidate the effect of lipid accumulation on pyroptosis. Genipin (GNP), a natural water-soluble cross-linking agent, has hepatoprotective effects and decreases lipid accumulation in the liver; however, the mechanisms underlying these effects are unknown.

Background/aims

Liver damage is a typical manifestation of nonalcoholic fatty liver disease (NAFLD). It originates from excessive fat accumulation, leading to hepatocyte death, inflammation, and fibrosis. Nonalcoholic steatohepatitis (NASH) is a type of NAFLD with a prevalence of 49% in morbidly obese patients. Pyroptosis plays an important role in the development of NASH; thus, it is important to elucidate the effect of lipid accumulation on pyroptosis. Genipin (GNP), a natural water-soluble cross-linking agent, has hepatoprotective effects and decreases lipid accumulation in the liver; however, the mechanisms underlying these effects are unknown.

Conclusion

GNP reverses HFD-induced liver damage and inhibits UCP2-mediated pyroptosis. Thus, GNP may serve as a potential therapeutic candidate for NAFLD.

Methods

In this study, qPCR and Western blot were used to examine pyroptotic gene expression in high-fat diet (HFD) induced obese mice and free fatty acids (FFAs) treated hepatocytes. At the same time, relative lactate dehydrogenase (LDH) release and Hoechst & propidium iodide (PI) staining were done to verify cell death. To explore the molecular mechanism, cell transfection were constructed with siRNA or plasmid to obtain knockdown or overexpression hepatocytes.

Results

We found that HFD-fed mice and FFAs-treated hepatocytes had obvious pyroptosis, and addition of GNP reversed liver damage and inhibited pyroptosis both in vitro and in vivo. Besides, UCP2 knockdown cells showed suppressed FFAs-mediated pyroptosis, as determined by decreased pyroptotic gene expression, reduced lactate dehydrogenase (LDH) release, and reduced cell death. Consistent with this, cells transfected with UCP2 had upregulated pyroptotic gene expression, increased LDH release, and increased cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。