SIRT1 downregulation mediated Manganese-induced neuronal apoptosis through activation of FOXO3a-Bim/PUMA axis

SIRT1 下调通过激活 FOXO3a-Bim/PUMA 轴介导锰诱导的神经元凋亡

阅读:4
作者:Xinyuan Zhao, Yiming Liu, Ganlin Zhu, Yuanyuan Liang, Bo Liu, Yifan Wu, Muxi Han, Wenxing Sun, Yu Han, Gang Chen, Junkang Jiang

Abstract

Manganese (Mn) is an essential trace element. Excessive exposure to Mn may lead to neuronal death and neurodegenerative disorders. Accumulating evidence has shown that silent mating type information regulation 2 homolog 1 (SIRT1) plays a vital role in brain damage. However, whether aberrant SIRT1 levels contribute to Mn-induced neurotoxicity remains unknown. In this study, we report the important role of SIRT1 downregulation during Mn-induced neuronal apoptosis. Mn was found to downregulate SIRT1 protein levels in the rat pheochromocytoma (PC12) cells and mouse brain tissues. Mn enhanced SIRT1 protein degradation and downregulated its gene expression. Furthermore, Mn induced cell apoptosis in a dose-dependent manner both in vitro and in vivo, and resulted in an increase in forkhead box O (FOXO) 3a expression and acetylation. SIRT1 activation by resveratrol clearly attenuated Mn-triggered apoptosis and FOXO3a activation. Mn markedly increased the expression of Bcl-2 interacting mediator of cell death (Bim) and p53-up-regulated modulator of apoptosis (PUMA), whereas downregulation of FOXO3a significantly inhibited their upregulation and subsequent apoptosis. In summary, we determined that Mn downregulated SIRT1 by multiple mechanisms, thus led to apoptosis via activation of the FOXO3a-Bim/PUMA axis in PC12 cells. These findings on the impact of Mn on SIRT1 may lead to an improved understanding of Mn-induced neurotoxicity and provide a molecular target to antagonise Mn-associated neuronal damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。