Fluoresceinated Aminohexanol Tethered Inositol Hexakisphosphate: Studies on Arabidopsis thaliana and Drosophila melanogaster and Docking with 2P1M Receptor

荧光素化氨基己醇束缚肌醇六磷酸酯:在拟南芥和果蝇上的研究以及与 2P1M 受体对接

阅读:2
作者:Sujeet Kumar Thakur, Krishnendu Goswami, Pallavi Rao, Shivam Kaushik, Bhanu Pratap Singh, Pinky Kain, Shailendra Asthana, Saikat Bhattacharjee, Prasenjit Guchhait, Sambasivan V Eswaran

Abstract

Inositol hexakisphosphate (InsP6; phytic acid) is considered as the second messenger and plays a very important role in plants, animals, and human beings. It is the principal storage form of phosphorus in many plant tissues, especially in dry fruits, bran, and seeds. The resulting anion is a colorless species that plays a critical role in nutrition and is believed to cure many diseases. A fluoresceinated aminohexanol tethered inositol hexakisphosphate (III) had been synthesized earlier involving many complicated steps. We describe here a simple two-step synthesis of (III) and its characterization using different techniques such as matrix-assisted laser desorption ionization mass spectrometry, tandem mass spectrometry, and Fourier transform infrared, ultraviolet-visible, ultraviolet-fluorescence, 1H nuclear magnetic resonance (NMR), and two-dimensional NMR spectroscopies. The effect of (III) has been investigated in the model systems, Arabidopsis thaliana and Drosophila melanogaster. Using Schrodinger software, computational studies on the binding of (III) with the protein 2P1M (Auxin-receptor TIR1-adaptor ASK1 complex) has revealed strong binding propensity with this compound. These studies on the fluoresceinated tethered phytic acid could have far reaching implications on its efficacy for human health and treatment of diseases (cancer/tumor and glioblastoma) and for understanding phosphorous recycling in the environment, especially for plant systems.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。