Morphological Responses and Gene Expression of Grain Amaranth (Amaranthus spp.) Growing under Cd

镉胁迫下生长的籽粒苋(Amaranthus spp.)的形态反应和基因表达

阅读:5
作者:Veronika Lancíková, Marián Tomka, Jana Žiarovská, Ján Gažo, Andrea Hricová

Abstract

Phytoremediation efficiency depends on the ability of plants to accumulate, translocate and resist high levels of metals without symptoms of toxicity. This study was conducted to evaluate the potential of grain amaranth for remediation of soils contaminated with Cd. Three grain amaranth varieties, "Pribina" (A. cruentus), "Zobor" (A. hypochondriacus x A. hybridus) and Plainsman (A. hypochondriacus x A. hybridus) were tested under different level of Cd (0, 5, 10 and 15 mg/L) in a hydroponic experimental treatment. All could be classified as Cd excluders or Cd-hypertolerant varieties able to grow and accumulate significant amounts of Cd from the hydroponic solution, preferentially in the roots. Under the highest level of Cd exposure, qRT-PCR expression analysis of five stress-related genes was examined in above- and below-ground biomass. The results show that the Cd concentration significantly increased the mRNA level of chitinase 5 (Chit 5) in amaranth roots as the primary site of metal stress. The involvement of phytochelatin synthase (PCS1) in Cd detoxification is suggested. Based on our findings, we can conclude that variety "Pribina" is the most Cd-tolerant among three tested and can be expected to be used in the phytomanagement of Cd loaded soils as an effective phytostabiliser.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。