Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing

早老素通过 EphB2 受体加工调节视网膜顶盖突触的形成

阅读:5
作者:Zhenyu Liu, Amit Thakar, Stephen W Santoro, Kara G Pratt

Abstract

As the catalytic component of γ-secretase, presenilin (PS) has long been studied in the context of Alzheimer's disease through cleaving the amyloid precursor protein. PS/γ-secretase, however, also cleaves a multitude of single-pass transmembrane proteins that are important during development, including Notch, the netrin receptor DCC, cadherins, drebrin-A, and the EphB2 receptor. Because transgenic PS-KO mice do not survive to birth, studies of this molecule during later embryonic or early postnatal stages of development have been carried out using cell cultures or conditional knock-out mice, respectively. As a result, the function of PS in synapse formation had not been well-addressed. Here, we study the role of PS in the developing Xenopus tadpole retinotectal circuit, an in-vivo model that allows for protein expression to be manipulated specifically during the peak of synapse formation between retinal ganglion cells and tectal neurons. We found that inhibiting PS in the postsynaptic tectal neurons impaired tadpole visual avoidance behavior. Whole cell recordings indicated weaker retinotectal synaptic transmission which was characterized by significant reductions in both NMDA receptor (NMDAR)- and AMPA receptor (AMPAR)-mediated currents. We also found that expression of the C-tail fragment of the EphB2 receptor, which is normally cleaved by PS/γ-secretase and which has been shown to upregulate NMDARs at the synapse, rescued the reduced NMDAR-mediated responses. Our data determine that normal PS function is important for proper formation and strengthening of retinotectal synapses through cleaving the EphB2 receptor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。