Identification of a Small-Molecule Inhibitor That Disrupts the SIX1/EYA2 Complex, EMT, and Metastasis

鉴定一种可破坏 SIX1/EYA2 复合物、EMT 和转移的小分子抑制剂

阅读:1
作者:Hengbo Zhou ,Melanie A Blevins ,Jessica Y Hsu ,Deguang Kong ,Matthew D Galbraith ,Andrew Goodspeed ,Rachel Culp-Hill ,Michael U J Oliphant ,Dominique Ramirez ,Lingdi Zhang ,Jennyvette Trinidad-Pineiro ,Lesley Mathews Griner ,Rebecca King ,Elena Barnaeva ,Xin Hu ,Noel T Southall ,Marc Ferrer ,Daniel L Gustafson ,Daniel P Regan ,Angelo D'Alessandro ,James C Costello ,Samarjit Patnaik ,Juan Marugan ,Rui Zhao ,Heide L Ford

Abstract

Metastasis is the major cause of mortality for patients with cancer, and dysregulation of developmental signaling pathways can significantly contribute to the metastatic process. The Sine oculis homeobox homolog 1 (SIX1)/eyes absent (EYA) transcriptional complex plays a critical role in the development of multiple organs and is typically downregulated after development is complete. In breast cancer, aberrant expression of SIX1 has been demonstrated to stimulate metastasis through activation of TGFβ signaling and subsequent induction of epithelial-mesenchymal transition (EMT). In addition, SIX1 can induce metastasis via non-cell autonomous means, including activation of GLI-signaling in neighboring tumor cells and activation of VEGFC-induced lymphangiogenesis. Thus, targeting SIX1 would be expected to inhibit metastasis while conferring limited side effects. However, transcription factors are notoriously difficult to target, and thus novel approaches to inhibit their action must be taken. Here we identified a novel small molecule compound, NCGC00378430 (abbreviated as 8430), that reduces the SIX1/EYA2 interaction. 8430 partially reversed transcriptional and metabolic profiles mediated by SIX1 overexpression and reversed SIX1-induced TGFβ signaling and EMT. 8430 was well tolerated when delivered to mice and significantly suppressed breast cancer-associated metastasis in vivo without significantly altering primary tumor growth. Thus, we have demonstrated for the first time that pharmacologic inhibition of the SIX1/EYA2 complex and associated phenotypes is sufficient to suppress breast cancer metastasis. SIGNIFICANCE: These findings identify and characterize a novel inhibitor of the SIX1/EYA2 complex that reverses EMT phenotypes suppressing breast cancer metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。