Caveolin-1 provides palliation for adverse hepatic reactions in hypercholesterolemic rabbits

Caveolin-1 可缓解高胆固醇血症兔的不良肝反应

阅读:5
作者:Ya-Hui Chen, Wei-Wen Lin, Chin-San Liu, Li-Sung Hsu, Yueh-Min Lin, Shih-Li Su

Abstract

Caveolins are an essential component of cholesterol-rich invaginations of the plasma membrane known as caveolae. These flask-shaped, invaginated structures participate in a number of important cellular processes, including vesicular transport, cholesterol homeostasis, and signal transduction. We investigated the effects of CAV-1 on mitochondrial biogenesis and antioxidant enzymes in hypercholesterolemia-affected target organs. A total of eighteen male New Zealand white rabbits were divided into three groups: a normal-diet group, an untreated hypercholesterolemia-induced group, and a hypercholesterolemia-induced group that received intravenous administration of antennapedia-CAV-1 (AP-CAV-1) peptide every 2 days for 2 weeks. Serum biochemistry, CAV-1 distribution, neutral lipid distribution, mitochondrial morphology, biogenesis-mediated protein content, oxidative stress balance, antioxidant enzyme levels, and apoptotic cell death of liver tissue were analysed. Hepatic and circulating cholesterol and low-density lipoprotein cholesterol (LDL-C) levels differed significantly between the three groups (P<0.05). Immunohistochemical staining intensity of CAV-1 was greater in AP-CAV-1-treated rabbits than in untreated rabbits, especially in the vicinity of the liver vasculature. The high levels of neutral lipids, malondialdehyde, peroxisome proliferator-activated receptor-γ coactive 1α (PGC-1α), and nuclear respiratory factor-1 (NRF-1) seen in untreated hypercholesteremic animals were attenuated by administration of AP-CAV-1 (P<0.05). In addition, mitochondria in animals that received treatment exhibited darker electron-dense matrix and integrated cristae. Furthermore, the levels of ROS modulator 1 (Romo1) and superoxide dismutase (SOD)-2, as well as catalase activity were significantly lower in CAV-1-treated hypercholesterolemic rabbits (P<0.05). AP-CAV-1 treatment also restored mitochondrial respiratory chain subunit protein content (OXPHOS complexes I-V), thereby preserving mitochondrial function (P<0.05). Furthermore, AP-CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by a reduction in the number of TUNEL-positive cells. Our results indirectly indicate that CAV-1 mediates the negative effects of PGC-1α on hepatic mitochondrial respiratory chain function, promotes the antioxidant enzyme defence system, and maintains mitochondrial biogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。