Imaging and analytical methods as applied to the evaluation of vasculature and hypoxia in human brain tumors

成像和分析方法在评估人类脑肿瘤血管和缺氧中的应用

阅读:5
作者:Sydney M Evans, Kevin W Jenkins, W Timothy Jenkins, Thomas Dilling, Kevin D Judy, Amy Schrlau, Alexander Judkins, Stephen M Hahn, Cameron J Koch

Abstract

Tissue hypoxia results from the interaction of cellular respiration, vascular oxygen carrying capacity, and vessel distribution. We studied the relationship between tumor vasculature and regions of low pO(2) using quantitative analysis of binding of the 2-nitroimidazole EF5 given to patients intravenously (21 mg/kg) approximately 24 h preceding surgery. We describe new computer algorithms for determining EF5 binding as a function of radial distance from individual blood vessels and converting this value to tissue pO(2). Tissues from six human brain tumors were assessed. In a hemangiopericytoma, a WHO Grade 2 and WHO Grade 3 glial brain tumor, all tissue pO(2) values calculated by EF5 binding were >20 mmHg (described as "physiologically oxygenated"). In these three tumors, EF5 binding gradients (measured as a function of distance from each observed vessel) were low, with small positive and negative values averaging close to zero. Much lower tissue oxygen levels were found, including near some vessels, in glioblastomas. Gradients of EF5 binding away from vessels were larger in glioblastomas than in the low-grade tumors, but positive and negative values again averaged to near zero. Based on these preliminary data, we hypothesize a new paradigm for tumor blood flow in human brain tumors whereby in-flowing and out-flowing blood patterns may have contrasting effects on average tissue EF5 (and by inference, oxygen) gradients. Our studies also imply that neither distance to the nearest blood vessel nor distance from each observed blood vessel provide reliable estimates of tissue pO(2).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。