Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders

前列腺的六种跨膜上皮抗原构成了脓疱性皮肤病患者的新型炎症联系

阅读:8
作者:Yun Liang, Xianying Xing, Maria A Beamer, William R Swindell, Mrinal K Sarkar, Liza Wolterink Roberts, John J Voorhees, J Michelle Kahlenberg, Paul W Harms, Andrew Johnston, Johann E Gudjonsson

Background

Pustular skin disorders are a category of difficult-to-treat and potentially life-threatening conditions that involve the appearance of neutrophil-rich pustules. The molecular basis of most pustular skin conditions has remained unknown.

Conclusion

Transcriptomic changes in 3 pustular skin disorders, GPP, PPP, and AGEP, converged on neutrophil chemotaxis and diapedesis and cytokines known to drive neutrophil-rich inflammatory processes, including IL-1 and members of the IL-36 family. STEAP1 and STEAP4 positively regulate the induction of proinflammatory neutrophil-activating cytokines.

Methods

Microarray analyses were performed to profile genome-wide gene expression of skin biopsy specimens obtained from patients with GPP, PPP, or AGEP and healthy control subjects. Functional enrichment, gene network, and k-means clustering analyses were used to identify molecular pathways dysregulated in patients with these disorders. Immunohistochemistry and immunofluorescence were used to determine protein localization. Quantitative RT-PCR and ELISA were used to determine transcript and secreted cytokine levels. Small interfering RNA was used to decrease transcript levels.

Objective

We sought to investigate the molecular basis of 3 pustular skin disorders: generalized pustular psoriasis (GPP), palmoplantar pustulosis (PPP), and acute generalized exanthematous pustulosis (AGEP).

Results

Molecules and pathways related to neutrophil chemotaxis emerged as common alterations in patients with GPP, PPP, and AGEP, which is consistent with the pustular phenotypes. Expression of two 6-transmembrane epithelial antigens of the prostate (STEAP) proteins, STEAP1 and STEAP4, was increased in patients' skin and colocalized with IL-36γ around neutrophilic pustules. STEAP1/4 expression clustered with and positively correlated with that of IL-1, the IL-36 family proteins, and CXCL1/8. STEAP4 expression was activated by cytokines and suppressed by inhibition of mitogen-activated protein kinase kinase 1/2, whereas STEAP1 expression appeared less prone to such dynamic regulation. Importantly, STEAP1/4 knockdown resulted in impaired induction of a broad spectrum of proinflammatory cytokines, including IL-1, IL-36, and the neutrophil chemotaxins CXCL1 and CXCL8. STEAP1/4 knockdown also reduced the ability of keratinocytes to induce neutrophil chemotaxis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。