A quantitative FastFUCCI assay defines cell cycle dynamics at a single-cell level

定量 FastFUCCI 检测可在单细胞水平上定义细胞周期动态

阅读:7
作者:Siang-Boon Koh, Patrice Mascalchi, Esther Rodriguez, Yao Lin, Duncan I Jodrell, Frances M Richards, Scott K Lyons

Abstract

The fluorescence ubiquitination-based cell cycle indicator (FUCCI) is a powerful tool for use in live cells but current FUCCI-based assays have limited throughput in terms of image processing and quantification. Here, we developed a lentiviral system that rapidly introduced FUCCI transgenes into cells by using an all-in-one expression cassette, FastFUCCI. The approach alleviated the need for sequential transduction and characterisation, improving labelling efficiency. We coupled the system to an automated imaging workflow capable of handling large datasets. The integrated assay enabled analyses of single-cell readouts at high spatiotemporal resolution. With the assay, we captured in detail the cell cycle alterations induced by antimitotic agents. We found that treated cells accumulated at G2 or M phase but eventually advanced through mitosis into the next interphase, where the majority of cell death occurred, irrespective of the preceding mitotic phenotype. Some cells appeared viable after mitotic slippage, and a fraction of them subsequently re-entered S phase. Accordingly, we found evidence that targeting the DNA replication origin activity sensitised cells to paclitaxel. In summary, we demonstrate the utility of the FastFUCCI assay for quantifying spatiotemporal dynamics and identify its potential in preclinical drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。