Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: for polymer composite applications

大豆壳和咖啡壳高温和低温热解产生的生物碳的表征:用于聚合物复合材料的应用

阅读:6
作者:Peter Quosai, Andrew Anstey, Amar K Mohanty, Manjusri Misra

Abstract

The physical properties of biocarbon vary widely with the biomass used, and the temperature and duration of pyrolysis. This study identifies the effects of feedstock characteristics and pyrolysis conditions on the production of biocarbon and the corresponding properties for industrial applications. For coffee chaff and soy hulls, ash content and carbon content increased with pyrolysis temperature and duration. Ash content increased thermal conductivity and specific heat, and decreased electrical conductivity. Change in surface area with pyrolysis conditions was dependent on type of feedstock. Increased surface area corresponded with increased thermal and electrical conductivity. Increased carbon content corresponded with increased graphitization and thermal stability and decreased surface functionality. Properties of soy hull biocarbons were found to be similar to the properties of other biocarbons with industrial applications such as incorporation into polymer composites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。