Inhibition mechanism of Ca2+, Mg2+ and Fe3+ in fine cassiterite flotation using octanohydroxamic acid

辛羟肟酸对细粒锡石浮选过程中Ca2+、Mg2+和Fe3+的抑制机理

阅读:8
作者:Liuyi Ren, Hang Qiu, Wenqing Qin, Ming Zhang, Yubiao Li, Penggang Wei

Abstract

The existence of metal ions should not be ignored in both hydrometallurgy and flotation. In this study, the effects of Ca2+, Mg2+ and Fe3+ on the flotation performance of cassiterite using octanohydroxamic acid (OHA) as the collector were investigated by micro-flotation tests, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle, zeta (ζ) potential measurements and atomic force microscopy (AFM) imaging. The results of the flotation and contact angle experiments showed that the addition of Ca2+, Mg2+ and Fe3+ significantly decreased both the recovery and contact angle of cassiterite with pH ranged from 6.0 to 12.0 in the presence of OHA collector. ζ-Potential measurements, solution chemistry analysis and FTIR measurements indicated that the flotation recovery of the cassiterite declined due to the CaOH+, MgOH+ and Fe(OH)3 sites on the cassiterite surface. XPS results indicated that the chemisorption of OHA and calcium ions on the cassiterite surface finally changed its chemical properties. The AFM images also revealed that new species Fe(OH)3 of Fe3+ formed and adsorbed on the cassiterite surface at pH 9.0. The adsorption of Fe(OH)3 reduced the adsorption of OHA on the cassiterite surface, thus the hydrophobicity of cassiterite was deteriorated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。