Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake

吗啡通过抑制兴奋性氨基酸转运体 3 型介导的半胱氨酸摄取来诱导整体 DNA 甲基化和逆转录转座子转录的氧化还原变化

阅读:7
作者:Malav Trivedi, Jayni Shah, Nathaniel Hodgson, Hyang-Min Byun, Richard Deth

Abstract

Canonically, opioids influence cells by binding to a G protein-coupled opioid receptor, initiating intracellular signaling cascades, such as protein kinase, phosphatidylinositol 3-kinase, and extracellular receptor kinase pathways. This results in several downstream effects, including decreased levels of the reduced form of glutathione (GSH) and elevated oxidative stress, as well as epigenetic changes, especially in retrotransposons and heterochromatin, although the mechanism and consequences of these actions are unclear. We characterized the acute and long-term influence of morphine on redox and methylation status (including DNA methylation levels) in cultured neuronal SH-SY5Y cells. Acting via μ-opioid receptors, morphine inhibits excitatory amino acid transporter type 3-mediated cysteine uptake via multiple signaling pathways, involving different G proteins and protein kinases in a temporal manner. Decreased cysteine uptake was associated with decreases in both the redox and methylation status of neuronal cells, as defined by the ratios of GSH to oxidized forms of glutathione and S-adenosylmethionine to S-adenosylhomocysteine levels, respectively. Further, morphine induced global DNA methylation changes, including CpG sites in long interspersed nuclear elements (LINE-1) retrotransposons, resulting in increased LINE-1 mRNA. Together, these findings illuminate the mechanism by which morphine, and potentially other opioids, can influence neuronal-cell redox and methylation status including DNA methylation. Since epigenetic changes are implicated in drug addiction and tolerance phenomenon, this study could potentially extrapolate to elucidate a novel mechanism of action for other drugs of abuse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。