Phosphatidylserine exposure promotes increased adhesion in Dictyostelium Copine A mutants

磷脂酰丝氨酸暴露促进粘菌 A 突变体粘附力增加

阅读:8
作者:Amber D Ide, Elise M Wight, Cynthia K Damer

Abstract

The phospholipid phosphatidylserine (PS) is a key signaling molecule and binding partner for many intracellular proteins. PS is normally found on the inner surface of the cell membrane, but PS can be flipped to the outer surface in a process called PS exposure. PS exposure is important in many cell functions, yet the mechanisms that control PS exposure have not been extensively studied. Copines (Cpn), found in most eukaryotic organisms, make up a family of calcium-dependent phospholipid binding proteins. In Dictyostelium, which has six copine genes, CpnA strongly binds to PS and translocates from the cytosol to the plasma membrane in response to a rise in calcium. Cells lacking the cpnA gene (cpnA-) have defects in adhesion, chemotaxis, membrane trafficking, and cytokinesis. In this study we used both flow cytometry and fluorescent microscopy to show that cpnA- cells have increased adhesion to beads and bacteria and that the increased adhesion was not due to changes in the actin cytoskeleton or cell surface proteins. We found that cpnA- cells bound higher amounts of Annexin V, a PS binding protein, than parental cells and showed that unlabeled Annexin V reduced the increased cell adhesion property of cpnA- cells. We also found that cpnA- cells were more sensitive to Polybia-MP1, which binds to external PS and induces cell lysis. Overall, this suggests that cpnA- cells have increased PS exposure and this property contributes to the increased cell adhesion of cpnA- cells. We conclude that CpnA has a role in the regulation of plasma membrane lipid composition and may act as a negative regulator of PS exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。