Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome

增强子-启动子相互作用图谱为猪基因组中骨骼肌相关性状提供见解

阅读:7
作者:Jingjin Li #, Yue Xiang #, Lu Zhang #, Xiaolong Qi, Zhuqing Zheng, Peng Zhou, Zhenshuang Tang, Yi Jin, Qiulin Zhao, Yuhua Fu, Yunxia Zhao, Xinyun Li, Liangliang Fu, Shuhong Zhao

Background

Gene expression programs are intimately linked to the interplay of active cis regulatory elements mediated by chromatin contacts and associated RNAs. Genome-wide association studies (GWAS) have identified many variants in these regulatory elements that can contribute to phenotypic diversity. However, the functional interpretation of these variants remains nontrivial due to the lack of chromatin contact information or limited contact resolution. Furthermore, the distribution and role of chromatin-associated RNAs in gene expression and chromatin conformation remain poorly understood. To address this, we first present a comprehensive interaction map of nuclear dynamics of 3D chromatin-chromatin interactions (H3K27ac BL-HiChIP) and RNA-chromatin interactions (GRID-seq) to reveal genomic variants that contribute to complex skeletal muscle traits.

Conclusions

Our results provide a valuable resource of candidate functional variants for complex skeletal muscle-related traits and establish an integrated approach to complement existing 3D genomics by exploiting RNA-chromatin and chromatin-chromatin interactions for future association studies.

Results

In a genome-wide scan, we provide systematic fine mapping and gene prioritization from GWAS leading signals that underlie phenotypic variability of growth rate, meat quality, and carcass performance. A set of candidate functional variants and 54 target genes previously not detected were identified, with 71% of these candidate functional variants choosing to skip over their nearest gene to regulate the target gene in a long-range manner. The effects of three functional variants regulating KLF6 (related to days to 100 kg), MXRA8 (related to lean meat percentage), and TAF11 (related to loin muscle depth) were observed in two pig populations. Moreover, we find that this multi-omics interaction map consists of functional communities that are enriched in specific biological functions, and GWAS target genes can serve as core genes for exploring peripheral trait-relevant genes. Conclusions: Our results provide a valuable resource of candidate functional variants for complex skeletal muscle-related traits and establish an integrated approach to complement existing 3D genomics by exploiting RNA-chromatin and chromatin-chromatin interactions for future association studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。