Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis

核 RIPK3 和 MLKL 促进细胞浆坏死小体形成和坏死性凋亡

阅读:5
作者:Kathrin Weber, Ria Roelandt, Inge Bruggeman, Yann Estornes, Peter Vandenabeele

Abstract

Necroptotic signaling converges in the assembly of a cytosolic signaling platform, the necrosome, with the activation of its downstream effector, MLKL. RIPK1 and RIPK3, key components of the necrosome, act as signaling intermediates for the activation of MLKL. We report that RIPK3 and MLKL continuously shuttle between the nucleus and the cytoplasm, whereas RIPK1 is constitutively present in both compartments. During TNF-induced necroptosis, nuclear RIPK1 becomes ubiquitinated, after which nuclear MLKL becomes phosphorylated and oligomerized. Pharmacological inhibition of the nuclear export machinery leads to retention of RIPK3 and MLKL in the nucleus, prevents the nucleation of cytosolic RIPK3/MLKL oligomerization, and reduces cell death. Our results suggest that passage of necroptotic signaling components through the nucleus is a mechanism for regulating cytosolic necrosome formation and consequently necroptotic cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。