A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells

核仁占主导地位的 piggyBac 转座酶 NP-mPB 可介导哺乳动物细胞中转座效率的提高

阅读:9
作者:Jin-Bon Hong, Fu-Ju Chou, Amy T Ku, Hsiang-Hsuan Fan, Tung-Lung Lee, Yung-Hsin Huang, Tsung-Lin Yang, I-Chang Su, I-Shing Yu, Shu-Wha Lin, Chung-Liang Chien, Hong-Nerng Ho, You-Tzung Chen

Abstract

PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase) codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB). Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3-4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。