Induction of immunoregulatory CD271+ cells by metastatic tumor cells that express human endogenous retrovirus H

表达人类内源性逆转录病毒 H 的转移性肿瘤细胞诱导免疫调节 CD271+ 细胞

阅读:7
作者:Chie Kudo-Saito, Masahiro Yura, Ryusuke Yamamoto, Yutaka Kawakami

Abstract

Human endogenous retroviruses (HERV) are associated with many diseases such as autoimmune diseases and cancer. Although the frequent expression of a variety of HERVs in tumor cells has been demonstrated, their functional contributions in cancer are as yet unclear. Intriguingly, HERVs and other retroviruses include an immunosuppressive domain in their transmembrane envelope proteins, but its mechanism of action and cancer relevance are obscure. In this study, we demonstrate that the human endogenous retrovirus HERV-H has a critical role in tumor metastasis and immune escape. We found that expression of herv-h mRNA was elevated in metastatic tumor cells undergoing epithelial-to-mesenchymal transition (EMT) and in primary tumor tissues from advanced colon cancer. The immunosuppressive peptide H17 derived from HERV-H was sufficient to induce EMT in tumor cells that expressed low levels of HERV-H, and it amplified this event within the tumor microenvironment. H17 also stimulated CCL19 expression in tumor cells, which in turn recruited and expanded a population of pluripotent immunoregulatory CD271(+) cells, which included mesenchymal stem cells and myeloid-derived suppressor cells. In tumor tissues from patients with advanced colon cancer, we confirmed that CD271(+) cells were increased in HERV-H(+)CCL19(+) tumor tissues. Notably, RNAi-mediated change of HERV-H or CCL19, or depletion of CD271(+) cells, improved immune responses in vitro and in vivo accompanied by tumor regression. Together, our results argued that HERV-H is a critical determinant of immune escape in cancer, suggesting its candidacy as a promising therapeutic target to treat patients with advanced cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。