Comparing expression and activity of PCSK9 in SPRET/EiJ and C57BL/6J mouse strains shows lack of correlation with plasma cholesterol

比较 SPRET/EiJ 和 C57BL/6J 小鼠品系中 PCSK9 的表达和活性,发现与血浆胆固醇缺乏相关性

阅读:6
作者:Francine Sirois, Michel Chrétien, Majambu Mbikay

Conclusions

Collectively, these results suggest that, compared to the B6 mouse, the SPRET mouse may represent an example of absence of direct correlation between PCSK9 and cholesterol levels in plasma, due to genetic variations leading to reduced secretion of PCSK9 associated with greater LDLR-degrading activity.

Methods

Liver expression of LDLR and PCSK9 transcripts were assessed by RT-PCR, and that of their corresponding proteins by immunoblotting. Purified recombinant PCSK9 proteins were assayed for their ability to degrade LDLR. Pcsk9 gene proximal promoters were tested for activation of a luciferase reporter gene.

Objective

Low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) are opposing regulators of plasma LDL-cholesterol levels. The PCSK9 gene exhibits many single or compound polymorphisms within or among mammalian species. This is case between the SPRET/EiJ (SPRET) and C57BL/6J (B6) mouse strains. We examined whether these polymorphisms could be associated with differential expression and activity of their respective PCSK9 molecules.

Results

SPRET and B6 mice carried comparable levels of plasma cholesterol in spite of the fact that SPRET mice expressed less PCSK9 and more LDLR in liver. There were indels and single-base differences between their Pcsk9 cDNA and promoter sequences. Ex vivo, SPRET PCSK9 protein was less secreted but was more active at degrading LDLR. Its gene promoter was more active at driving expression of the luciferase reporter. Conclusions: Collectively, these results suggest that, compared to the B6 mouse, the SPRET mouse may represent an example of absence of direct correlation between PCSK9 and cholesterol levels in plasma, due to genetic variations leading to reduced secretion of PCSK9 associated with greater LDLR-degrading activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。